Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the vector and the cartesian equations of the line that passes through the points $(3, -2, -5), (3, -2, 6).$

$\begin{array}{1 1}\large\frac{x-3}{3}=\large\frac{y+2}{-2}=\large\frac{z+5}{6} \\ \large\frac{x-3}{3}=\large\frac{y+2}{-2}=\large\frac{z+5}{-5} \\ \large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{11} \\\large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{1} \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Vector equation of a given line passing through two given point is $ \overrightarrow r = \overrightarrow a+t (\overrightarrow b-\overrightarrow a) $ where $t \in R$
  • Cartesian equation is $ \large\frac{x-x_1}{x_2-x_1}=\large\frac{y-y_1}{y_2-y_1}=\large\frac{z-z_1}{z_2-z_1}$
Let the point $(x_1,y_1,z_1)=(3,-2,-5)$ and $(x_2,y_2,z_2)=(3,-2,6)$
$ \overrightarrow b-\overrightarrow a = (3-3)\hat i +(-2+2) \hat j+(6+5) \hat k$
$=11 \hat k$
On substituting for $\overrightarrow a$ and $\overrightarrow b,-\overrightarrow a$ we get,
Vector equation of the line is
$ \overrightarrow r = (3\hat i -2 \hat j-5 \hat k)+t(11 \hat k)$
The Cartesian equation is $ \large\frac{x-3}{3-3}=\large\frac{y+2}{-2+2}=\large\frac{z+5}{6+5}$
On simplifying we get,
$ \large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{11}$
answered Jun 4, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App