logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Three Dimensional Geometry
0 votes

Find the vector and the cartesian equations of the line that passes through the points $(3, -2, -5), (3, -2, 6).$

$\begin{array}{1 1}\large\frac{x-3}{3}=\large\frac{y+2}{-2}=\large\frac{z+5}{6} \\ \large\frac{x-3}{3}=\large\frac{y+2}{-2}=\large\frac{z+5}{-5} \\ \large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{11} \\\large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{1} \end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Vector equation of a given line passing through two given point is $ \overrightarrow r = \overrightarrow a+t (\overrightarrow b-\overrightarrow a) $ where $t \in R$
  • Cartesian equation is $ \large\frac{x-x_1}{x_2-x_1}=\large\frac{y-y_1}{y_2-y_1}=\large\frac{z-z_1}{z_2-z_1}$
Let the point $(x_1,y_1,z_1)=(3,-2,-5)$ and $(x_2,y_2,z_2)=(3,-2,6)$
$ \overrightarrow b-\overrightarrow a = (3-3)\hat i +(-2+2) \hat j+(6+5) \hat k$
$=11 \hat k$
On substituting for $\overrightarrow a$ and $\overrightarrow b,-\overrightarrow a$ we get,
Vector equation of the line is
$ \overrightarrow r = (3\hat i -2 \hat j-5 \hat k)+t(11 \hat k)$
The Cartesian equation is $ \large\frac{x-3}{3-3}=\large\frac{y+2}{-2+2}=\large\frac{z+5}{6+5}$
On simplifying we get,
$ \large\frac{x-3}{0}=\large\frac{y+2}{0}=\large\frac{z+5}{11}$
answered Jun 4, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...