logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The integrating factor of the differential equation $(1-y^2)\large\frac{dx}{dy}$$+yx=ay\: \;is$

\[(A)\;\frac{1}{y^2-1}\qquad(B)\;\frac{1}{{\sqrt{y^2-1}}}\qquad(C)\;\frac{1}{1-y^2}\qquad(D)\;\frac{1}{{\sqrt{1-y^2}}}\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • The integrating factor of the equation $\large\frac{dx}{dy}$$ + px = Q$ is $e^{\large\int p dy}$
Step 1:
Let us rewrite the equation as $\large\frac{dx}{dy} +\frac{ yx}{(1+y^2)} =\frac{ ay}{(1-y^2)}$
Here $p=\large\frac{y}{(1+y^2)}$
Step 2:
$\int \large\frac{y}{(1-y^2)}$$dy=\large\frac{1}{2}$$\log(1-y^2)=-\log\sqrt{1-y^2}$
Hence the integration factor is $e^{\log\sqrt{\large\frac{1}{\mid1-y^2\mid}}}$
$\Rightarrow \large\frac{1}{\sqrt{1-y^2}}$
Hence the correct option is D.
answered Jul 30, 2013 by sreemathi.v
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...