Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The life of army shoes is normally distributed with mean $8$ months and standard deviation $2$ months. If $5000$ pairs are issued, how many pairs would be expected to need replacement within $12$ months.

Can you answer this question?

1 Answer

0 votes
  • Standard normal distribution:
  • In a standard normal distribution $\mu=0,\sigma ^2=1$
  • The random variable $X$ can be converted to the standard normal variable $Z$ by the transformation
  • $Z=\large\frac{X-\mu}{\sigma}$
Step 1:
Let $X$ be the random variable denoting the life of a pair of army shoes.
$X\sim N(8,2^2)$
Step 2:
A pair of shoes would require replacement within 12 months if its life is less than 12 months.
$\therefore$ we have to find $P(X < 12)$
Step 3:
Let $Z$ be the standard normal variate.
When $X=12$
Step 4:
$\therefore P(X < 12)=P(Z < 2)$
$\qquad\qquad\;\;\;\;=0.5+P(0 < Z < 2)$
Step 5:
Out of 5000 pairs (N=5000) the number of pairs that are expected to be replaced within 12 months=$5000\times 0.9772$
$\Rightarrow 4886$
answered Sep 19, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App