Ask Questions, Get Answers

Want to ask us a question? Click here
Home  >>  TN XII Math
0 votes

Find$C$. $\mu$ and $c^{2}$ of the normal distribution whose probability function is given by $f{x}$=$C$$e^{\large -x^2+3x}$$,-\infty<$X$<\infty$.

Can you answer this question?

1 Answer

0 votes
  • A Continuous random variable $X$ is said to follow a normal distribution with parameter $\mu$ and $\sigma$ (or $\mu$ and $\sigma^2$) if the probability density function is
  • $f(x)=\large\frac{-1}{\sigma \sqrt{2\pi}}$$e^{-\Large\frac{1}{2}(\Large\frac{x-\mu}{\sigma})^2};-\infty < x < \infty,-\infty < \mu < 0$ and $\sigma >0$
  • $X\sim N(\mu,\sigma).$
  • Constants of a normal distribution :
  • Mean $=\mu$
  • variance=$\sigma^2$
  • standard deviation=$\sigma$
Step 1:
The probability density function of a random variable $X$
$f(x)=Ce^{x^2-3x},-\infty < x < \infty$
Step 2:
$\quad\quad=Ce^{\Large\frac{9}{4}}.e^{-\large\frac{1}{2}\big(\Large\frac{x-\large\frac{3}{2}}{\Large\frac{1}{\sqrt 2}}\big)^2}$
Step 3:
Comparing with the probability density function $f(x)=\large\frac{-1}{\sigma \sqrt{2\pi}}$$e^{-\Large\frac{1}{2}(\Large\frac{x-\mu}{\sigma})^2}$
We can see that $\mu=\large\frac{3}{2}$$,\sigma=\large\frac{1}{\sqrt 2}$
$\large\frac{1}{\sigma \sqrt{2\pi}}=\frac{1}{\Large\frac{1}{\sqrt 2}.\sqrt 2\pi}$
answered Sep 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App