#
If the set $S={1,2,3...........12}$ is to be partitioned into 3 sets A,B,C of equal size so that $A\cup\:\:B\cup\:C=S\:and\:A\cap\:B=B\cap\:C=C\cap\: A=\phi$, then the number of ways the partition can be done is equal to: \[\] $(A)\:\:\:\large \frac{12!}{3!(3!)^4}\quad$ $(B)\:\:\:\large \frac{12!}{(4!)^3}\quad$ $(C)\:\:\:\ \large \frac{12!}{(3!)^3}\quad$ $(D)\:\:\: \large \frac{12!}{3!(4!)^3}\quad$