Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Evaluate: $ \int \limits_{-1}^{3/2} \; \left | x \sin \pi x \right | \; dx $

Can you answer this question?

1 Answer

0 votes
  • $\; \int \limits_a^b f(x)dx=F(b)-F(a)$
Step 1:
Given $I= \int \limits_{-1}^{3/2} |x \sin \pi x|dx$
Let $\pi x=t$ on differentiating w.r.t x
$\pi.dx=dt$ Also $x=\pi/t,$ and $dx=dt/\pi$
The limit changes when we substitute t
When $x=-1,t=-\pi$ and
When $4x=3/2,\; t=3 \pi/2$
Therefore $I= \large\frac{1}{\pi^2} $$\int \limits_{-\pi}^{3\pi/2} |\large\frac{t}{\pi}$$ \sin t|\large\frac{dt}{\pi}$
$= \large\frac{1}{\pi^2} $$\int \limits_{-\pi}^{3\pi/2} |t \sin t|dt$
$= \large\frac{1}{\pi^2} $$\int \limits_{-\pi}^{\pi} | t\sin t|dt+ \int \limits_{\pi}^{3 \pi/2} |t\sin t|dt$$
$\sin t$ changes in the 3 rd and 4 th quadrant.
Now let us consider $f(t)=|t \sin t|$ on $\pi,3\pi/2$ (ie) in the 3 rd quadrant
Hence $ t \sin t=-ve$ therefore $|t \sin t|=-t \sin t$ on $[\pi,3\pi/2]$
Also Let $f(t) =|t \sin t|$
Therefore $ f(-t)=|-t. \sin (-t)|= t.\sin t$
Hence it is an even function
Therefore $ \int \limits_{-\pi}^{\pi} |t \sin t|dt= 2 \int \limits_0^{\pi} | t \sin t|dt =2 \int \limits_0^{\pi} t \sin t .dt$
Therefore $ I=\bigg\{ \frac{1}{\pi^2} \bigg( 2\int \limits_0^{\pi} t \sin t dt \bigg)- \int \limits_\pi^{3 \pi/2} t \sin t dt\bigg\}$
Step 2:
Consider $\int t \sin t\;dt$
Clearly this is of the form $\int udv,$ which can be solved by the method of integration
$\int udv=uv-\int vdu$
Let $u=t$ on differentiating w.r.t t,$du=dt$
Let $dv=\sin t dt $ on integrating we get, $v=-\cos t dt$
Therefore $ I= (-t \cos t)-\int -\cos t dt$
$=-(t \cos t)+\int \cos t dt$
On integrating we get
$-( t\cos t)+(\sin t)$
Step 3:
Therefore $ I=\large \frac{1}{\pi^2}$$ \bigg[2 \int \limits_0^{\pi} t \sin t dt -\int \limits_{\pi}^{3\pi/2} t \sin tdt\bigg]$
$= \large\frac{1}{\pi^2} $$\bigg[2( \sin t-t \cos t)\bigg]_0^{\pi}- \bigg[ \sin t- t cos t\bigg]_\pi^{3\pi/2}$
On applying limits
$= \large\frac{1}{\pi^2} $$\bigg[2( \sin \pi-\pi \cos \pi)-0\bigg]-\bigg[\bigg( \sin \large\frac{3\pi}{2}-\frac{3\pi}{2} $$\cos \large\frac{3\pi}{2}\bigg)$$-\bigg(\sin \pi-\pi \cos \pi\bigg)\bigg]$
$\sin \pi=0, \cos \pi=-1, \sin 3\pi/2=-1, \cos 3 \pi/2 =0$
$=\large\frac{1}{\pi^2} $$[2 \pi -(1-\pi)]$


answered Apr 27, 2013 by meena.p
edited Jan 9, 2014 by balaji.thirumalai
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App