logo

Ask Questions, Get Answers

X
 

Evaluate the following problems using properties of integration: $\int\limits_{0}^{\large\frac{\pi}{2}}\sin^{3}x\cos xdx$

Download clay6 mobile app

1 Answer

Toolbox:
  • $\int \limits_{-a}^a f(x) dx=2 \int \limits_0^a f(x) dx $ if f is an even function
  • $\int \limits_{-a}^a f(x) dx=0 $ if f is an odd function
Given $\int\limits_{0}^{\large\frac{\pi}{2}}\sin^{3}x\cos xdx$
Step 1:
$\int\limits_{0}^{\large\frac{\pi}{2}}\sin^{3}x\cos xdx=\large\frac{\sin ^4 x}{4} \bigg]_0^{\large\frac{\pi}{2}}=\large\frac{1}{4}$
answered Aug 14, 2013 by meena.p
 

Related questions

Ask Question
Tag:MathPhyChemBioOther
...
X