logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Evaluate the following problems using properties of integration: $\int\limits_{\large\frac{-\pi}{2}}^{\large\frac{\pi}{2}}\sin^{2}x\cos x dx$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int \limits_{-a}^a f(x) dx=2 \int \limits_0^a f(x) dx $ if f is an even function
  • $\int \limits_{-a}^a f(x) dx=0 $ if f is an odd function
Given $\int\limits_{\large\frac{-\pi}{2}}^{\large\frac{\pi}{2}}\sin^{2}x\cos x dx$
Step 1:
$f(x) =\sin ^2 x \cos x$
$f(-x) =\sin ^2 (-x) \cos (-x)$
$\qquad=\sin ^2 x \cos x=f(x)$
Step 2:
$f(x)$ is an even function
$\int\limits_{\large\frac{-\pi}{2}}^{\large\frac{\pi}{2}}\sin^{2}x\cos x dx=2\int\limits_0^{\large\frac{\pi}{2}}\sin^{2}x\cos x dx$
Step 3:
$\qquad= \large\frac{2 \sin ^3x }{3} \bigg]_0^{\large\frac{\pi}{2}}$
$\qquad=\large\frac{2}{3}$
answered Aug 14, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...