logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Evaluate the following problems using properties of integration: $\int\limits_{\large\frac{-\pi}{4}}^{\large\frac{\pi}{4}}x \sin^{2}xdx$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int \limits_{-a}^a f(x) dx=2 \int \limits_0^a f(x) dx $ if f is an even function
  • $\int \limits_{-a}^a f(x) dx=0 $ if f is an odd function
Given $\int\limits_{\large\frac{-\pi}{4}}^{\large\frac{\pi}{4}}x \sin^{2}xdx$
Step 1:
$f(x)=x \sin ^2 x$
$f(-x)=(-x) \sin ^2 (-x)$
$\qquad=(-x)(-\sin x)^2$
$\qquad=-x \sin ^2 x$
Step 2:
$\therefore f(x)$ is an odd function
$\int\limits_{\large\frac{-\pi}{4}}^{\large\frac{\pi}{4}}x \sin^{2}xdx=0$
answered Aug 14, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...