logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Evaluate the following problems using properties of integration: $\int\limits_{0}^{3}\large\frac{\sqrt{x}dx}{\sqrt{x}+\sqrt{3-x}}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int \limits_0^a f(x) dx=\int \limits_0^a f(a-x) dx$
$\int\limits_{0}^{3}\large\frac{\sqrt{x}dx}{\sqrt{x}+\sqrt{3-x}}$
Step 1:
$\int\limits_{0}^{3}\large\frac{\sqrt{x}dx}{\sqrt{x}+\sqrt{3-x}}$$=I$
$\qquad=\int\limits_{0}^{3}\large\frac{\sqrt{3-x}dx}{\sqrt{3-x}+\sqrt{3-(3-x)}}$
$\qquad=\int\limits_{0}^{3}\large\frac{\sqrt{3-x}dx}{\sqrt{3-x}+\sqrt{x}}$
Step 2:
$\therefore 2I=\int \limits _0^3 \bigg[\large\frac{\sqrt x}{\sqrt x +\sqrt 3 -x}+\frac{\sqrt {3-x}}{\sqrt {3-x}+\sqrt x}\bigg]$$dx$
$\qquad=\int \limits_0^3 dx=x \bigg]_0^3=3$
$=>I=\large\frac{3}{2}$

 

answered Aug 14, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...