logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

Evaluate: $\int\limits_{0}^{\large\frac{\pi}{2}}\sin^{6}x dx$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int \limits_0^{\large\frac{\pi}{2}} \sin ^n x dx$$=\int \limits_0^{\large\frac{\pi}{2}} \cos ^n x dx= \left\{ \begin{array}{1 1} \large\frac{n-1}{n}.\frac{n-3}{n-2}.\frac{n-5}{n-4}...\frac{2}{3}\; \normalsize when\; n\; is\; odd \\ \large\frac{n-1}{n}.\frac{n-3}{n-2}.\frac{n-5}{n-4}...\frac{1}{2}\frac{\pi}{2} \normalsize \;when\; n\; is\; even\; \end{array} \right. $
$\int\limits_{0}^{\large\frac{\pi}{2}}\sin^{6}x dx$
$\qquad= \large\frac{5}{6}. \frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}$
$\qquad=\large\frac{5 \pi}{32}$
answered Aug 14, 2013 by meena.p
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...