Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the area of the region bounded by the curve $y=3x^{2}-x$ and the $x$-axis between $x=-1$ and $x=1$

Can you answer this question?

1 Answer

0 votes
  • Area bounded by the curve $t=f(x),$ the x-axis and the ordinates $x=a,x=b$ is $\int \limits_a^b f(x) dx $ or $ \int \limits _a^b y dx $
  • If the curve lies below the x-axis for $a \leq x \leq b,$ then the area is $\int \limits_a^b (-y) dx=\int \limits_a^b (-f(x))dx$
Given $y=3x^2 -x$
Step 1:
$y= 3(x^2-\large\frac{x}{3}+\frac{1}{36})-\frac{1}{12}$
$(y+\large\frac{1}{12})$$=3 (x- \large\frac{1}{6})^2$
This is a parabola passing through $(0,0)$ vector at $\bigg(\large\frac{1}{6},\frac{-1}{12}\bigg)$ and opening upwards
Step 2:
Area bounded by $y=3x^2 -x$
$A=A_1 (between \; x=-1,x=0)$
$+A_2 (between \; x=0,x =\large\frac{1}{3})$
$+A_3 (between \; x =\large\frac{1}{3}$$x=1)$
$A_2$ lies below the x-axis (on the -ve side of y-axis)
Step 3:
$\therefore A=A_1+A_2+A_3=\int \limits_{-1}^0 y dx-\int \limits_0^{\large\frac{1}{3}} y dx+\int \limits _{\large\frac{1}{3}}^1 ydx$
$\qquad=\int \limits_{-1}^0 (3x^2-x)dx-\int \limits_0^{\large\frac{1}{3}} (3x^2-x)dx+\int \limits _{\large\frac{1}{3}}^1 (3x^2-x)dx$
$\qquad= -(-1-\large\frac{1}{2})-\bigg[\large\frac{1}{27}-\frac{1}{18}\bigg]+\bigg[1-\large\frac{1}{2}-\bigg(\large\frac{1}{27}-\frac{1}{18}\bigg)\bigg]$
$\qquad= \large\frac{3}{2}+\large\frac{1}{54}+\large\frac{1}{2}+\frac{1}{54}$
$\qquad=2 + \large\frac{1}{27}$
$\qquad= \large\frac{55}{27}$$sq.units$
answered Aug 15, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App