Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Find the area of the region bounded by the parabola $y^{2}=4x$ and the line $2x-y=4$

Can you answer this question?

1 Answer

0 votes
  • Area bounded by the curve $t=f(x),$ the x-axis and the ordinates $x=a,x=b$ is $\int \limits_a^b f(x) dx $ or $ \int \limits _a^b y dx $
  • If the curve lies below the x-axis for $a \leq x \leq b,$ then the area is $\int \limits_a^b (-y) dx=\int \limits_a^b (-f(x))dx$
$2x=y+4 (ii)$
$y^2 =2(y+4)$
and $x=4,1$
The points of intersection are $(4,4),(1,-2)$
Required area= Area to left of line - area of left of area
$\qquad=\large\frac{1}{2} $$ \int \limits_{-2}^ 4(y+4) dy- \large\frac{1}{4}$$\int \limits _{-2}^4y^2 dy$
On integrating we get,
$\qquad=\large\frac{1}{2}$$ \bigg[4y+\large\frac{y^2}{2}$$\bigg]_{-2}^{4}-\large\frac{1}{4}\bigg[\large\frac{y^3}{3}\bigg]_{-2}^4$
Applying the limits we get
$\qquad= \large\frac{1}{2}$$[(16+8)+(8-2)]-\large\frac{1}{12}$$(64+8)$
$\qquad= 15-6 $
$\qquad=9$ sq.units
answered Aug 16, 2013 by meena.p
edited Nov 25, 2014 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App