Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

Derive the formula for the volume of a right circular cone with radius $'r'$ and height $'h'$.

Can you answer this question?

1 Answer

0 votes
  • Area bounded by the curve $t=f(x),$ the x-axis and the ordinates $x=a,x=b$ is $\int \limits_a^b f(x) dx $ or $ \int \limits _a^b y dx $
  • If the curve lies below the x-axis for $a \leq x \leq b,$ then the area is $\int \limits_a^b (-y) dx=\int \limits_a^b (-f(x))dx$
Step 1:
A right circular cone of radius r,height h, generated when the area bounded by the line OA(Where a is the point(h,r))
Step 2:
The x-axis and $x=h$ is rotated about the x-axis
Equation of OA is $\large\frac{y}{x}=\frac{r}{h}$$=>y=\large\frac{r}{h}$$x$
The volume of the cone$=\pi\int\limits_0^h y^2dx=\pi\int\limits_0^h \large\frac{r^2}{h^2}$$x^2dx$
answered Aug 16, 2013 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App