Chat with tutor

Ask Questions, Get Answers


A missile fired from ground level rises $x$ metres vertically upwards in $t$ seconds and $x=100t-\large\frac{25}{2}t^{2}$ find the initial velocity of the missile.

Note: This is part 1st of a 4 part question, split as 4 separate questions here.

1 Answer

  • If $s=f(t)$ is the distance function, representing the distance 's' travelled by a particle in time t, then the velocity and acceleration functions are $v=\large\frac{ds}{dt}$$=t'(t)$ and $a=\large\frac{d^2s}{dt^2}=f''(t)$
  • When a particle starts from rest,velocity v and time t are 0. When a particle is thrown up, it reaches maximum height at which $v=0$ and then falls back to earth. When a moving particle comes rest, $v=0$
  • If $y=f(x)$ then $\large\frac{dy}{dx}$$=f'(x)$ is the rate of change of w.r.t x
  • $\large\frac{dy}{dx_{(x_1,y_1)}}$ is the slope of the tangent to the curve at the point $(x_1,y_1) $ on the curve. It is the slope of the curve at that point.
  • The normal at a point $(x_1,y_1)$ on $y=f(x)$ is perpendicular to the tangent at $(x_1,y_1)$
Initial velocity:
Velocity $=\large\frac{dx}{dy}$
$\qquad\quad=100-\large\frac{25}{2}$$\times 2t$
Initial velocity is obtained by substituting $t=0$
Therefore initial velocity $=100\; m/sec$
Help Clay6 to be free
Clay6 needs your help to survive. We have roughly 7 lakh students visiting us monthly. We want to keep our services free and improve with prompt help and advanced solutions by adding more teachers and infrastructure.

A small donation from you will help us reach that goal faster. Talk to your parents, teachers and school and spread the word about clay6. You can pay online or send a cheque.

Thanks for your support.
Please choose your payment mode to continue
Home Ask Homework Questions
Your payment for is successful.
Clay6 tutors use Telegram* chat app to help students with their questions and doubts.
Do you have the Telegram chat app installed?
Already installed Install now
*Telegram is a chat app like WhatsApp / Facebook Messenger / Skype.