Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Show that the differential equation is homogeneous and solve $y\: dx+x\log\bigg(\large\frac{y}{x}\bigg)$$dy-2x\;dy=0$

$\begin{array}{1 1}\log(\large\frac{y}{x}) - 1 = Cy \\\log(\large\frac{x}{y}) - 1 = Cy \\ \log(\large\frac{y}{x}) + 1 = Cy \\\log(\large\frac{x}{y}) +1 = Cy \end{array} $

Can you answer this question?

1 Answer

0 votes
  • A differential equation of the form $\large\frac{dy}{dx }$$= F(x,y)$ is said to be homogenous if $F(x,y)$ is a homogenous function of degree zero.
  • To solve this type of equations substitute $y = vx$ and $\large\frac{dy}{dx }$$= v + x\large\frac{dv}{dx}$
Step 1:
The given equation can be rearranged and written as $\large\frac{dy}{dx }=-\bigg[\frac{ y}{x\log(y/x) -2x}\bigg]$
$F(x,y) =\large\frac{ ky}{kx\log ky/kx - 2kx}$$= k^0.F(x,y)$
This is a homogenous funtion in degree zero.
Step 2:
Using the information in the tool box, let us substitute for $y$ and $\large\frac{dy}{dx}$
$v + x\large\frac{dv}{dx} = $$vx[x\log v - 2x]$
Taking the common factor $x$ and cancelling we get
$v + x\large\frac{dv}{dx} =\frac{ v}{[\log v -2]}$
bringing $v$ from LHS to RHS we get
$x\large\frac{dv}{dx} =\large\frac{ [v+v\log v - 2v]}{[2-\log v]}$
$x\large\frac{dv}{dx} =\large\frac{ [v\log v - v]}{[2-\log v]}$
seperating the variables we get,
$\large\frac{[2-logv]dv}{v(\log v - 1) }= \frac{dx}{x }$
Step 3:
Integrating on both sides we get
$\int\large\frac{ [2-\log v]}{v(\log v - 1) }= \int \large\frac{dx}{x}$
writing 2 as 1+1 we get,
$\int\large\frac{ [1+1-\log v]}{v(\log v-1)}$$dv= \int\large\frac{ dx}{x }$
$\int\large\frac{dv}{v(\log v-1) }- \int \large\frac{dv}{v }= \int\large\frac{ dx}{x}$
Step 4:
Consider $\large\frac{dv}{v(logv - 1)}$,
We can integrate by the method of substitution
Let $\log v -1= t$; then $dt =\large\frac{ dv}{v }$
substituting this we get $\large\frac{dt}{t}$ or intgrating this we get $\log t$
substituting for $t$ we get $\log(\log v - 1)$
Step 5:
Hence on integrating we get,
$\log(\log v - 1) - \log v = \log x + \log C$
$\log\large\frac{[\log v - 1]}{v}$$ = \log Cx$
$\log v - 1= vCx$
$\log(\large\frac{y}{x})$$- 1 =(\large\frac{y}{x})$$Cx$
$\log(\large\frac{y}{x})$$ - 1 = Cy$
This is the required solution.
answered Aug 13, 2013 by sreemathi.v
edited Aug 13, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App