logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If A=$\begin{bmatrix} 1\\ 2 \\ 3 \end{bmatrix}$ than the rank of $AA^{T}$is

\[\begin{array}{1 1}(1) 3&(2) 0\\(3)1&(4) 2\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
A=$\begin{bmatrix} 1\\ 2 \\ 3 \end{bmatrix}$
$A^T=\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
$AA^T=\begin{bmatrix} 1\\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$
$\qquad=\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$
$\qquad=\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$R_2 \to R_2 - 2R_1$
$R_3 \to R_3 - 3R_1$
The No. of non zero rows in $=1$
$p(A)=1$
Hence 1 is the correct answer.
answered May 2, 2014 by meena.p
edited May 2, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...