logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If A=$\begin{bmatrix} 2& 0& 1 \end{bmatrix}$ than the rank of $AA^{T}$is

\[\begin{array}{1 1}(1) 1&(2) 2\\(3)3&(4) 0\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
A=$\begin{bmatrix} 2& 0& 1 \end{bmatrix}$
$A^T=\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$
$AA^T=\begin{bmatrix} 2& 0& 1 \end{bmatrix}\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$
$\qquad= \begin{bmatrix} 4+0+1=5 \end{bmatrix}$
The No. of non zero rows in $1$
$p(A)=1$
Hence 1 is the correct answer
answered May 2, 2014 by meena.p
edited May 2, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...