logo

Ask Questions, Get Answers

X
 

If A=$\begin{bmatrix} 2& 0& 1 \end{bmatrix}$ than the rank of $AA^{T}$is

\[\begin{array}{1 1}(1) 1&(2) 2\\(3)3&(4) 0\end{array}\]

Download clay6 mobile app

1 Answer

A=$\begin{bmatrix} 2& 0& 1 \end{bmatrix}$
$A^T=\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$
$AA^T=\begin{bmatrix} 2& 0& 1 \end{bmatrix}\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$
$\qquad= \begin{bmatrix} 4+0+1=5 \end{bmatrix}$
The No. of non zero rows in $1$
$p(A)=1$
Hence 1 is the correct answer
answered May 2, 2014 by meena.p
edited May 2, 2014 by meena.p
 

Related questions

...
X