Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Show that the differential equation is homogeneous and solve $(x^2+xy)\;dy=(x^2+y^2)\;dx$

Can you answer this question?

1 Answer

0 votes
  • A function is said to be homogenous function in degree n if $F(kx,ky) = k^nF(x,y)$ for any non zero constant $k.$
  • To solve these type of homogenous functions we make the substitution $y = vx$ hence $\large\frac{dy}{dx}$$ = v+x\large\frac{dv}{dx}$
Step 1:
Given: $(x^2 + xy)dy = (x^2 + y^2)dx$
$\large\frac{dy}{dx} =\frac{ (x^2 + y^2)}{(x^2 + xy)}$
$F(x,y) =\large\frac{ (x^2 + y^2)}{(x^2+xy)}$
$F(kx,ky) = \large\frac{k[x^2+y^2]}{[x^2 + xy]}$$ = k^0 $
Hence this is a homogenous function of degree 0.
Step 2:
Using the information in the tool box let us substitute for $y = vx$ and $\large\frac{dy}{dx}$$ = v + x\large\frac{dv}{dx}$
$v + x\large\frac{dv}{dx} =\frac{ [x^2 +x^2 v^2]}{x^2 + xvx}$
Taking the common factor $x^2$ and cancelling we get
$v + x\large\frac{dv}{dx} =\frac{ [1+v^2]}{1+v}$
bringing $v$ from the LHS to the RHS and simplifying we get,
$x\large\frac{dv}{dx} =\frac{ 1-v}{1+v}$
on seperating the variables we get,
$\large\frac{[1+v]}{[1-v]} =\frac{ dx}{x}$
$\large\frac{2}{[1-v] - 1} =\frac{ dx}{x}$
Step 3:
On integrating both sides we get,
$-2\log[1-v] -v = \log x + \log c$
$v = -2\log[1-v] - \log x +\log C$
$v=\large\frac{\log c}{x(1-v)^2}$
substituting for $v$ we get
$\large\frac{y}{x} =\frac{ \log C}{x[1-(y/x)^2]}$
$\large\frac{cx}{(x-y)^2 }=$$e^{\Large (y/x)}$
on rearranging we get
$(x-y)^2= Cxe^{\Large(-y/x)}$
This is the required solution.
answered Aug 14, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App