Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

The general solution of the differential equation\(\frac{\large dy}{\large dx}=e^{x+y}\)is

\[ \begin{array}{1 1}(A)\;e^x+e^{-y}=C\qquad(B)\;e^x+e^y=C\\(C)\;e^{-x}+e^y=C\qquad(D)\;e^{-x}+e^{-y}=C\end{array}\]

Can you answer this question?

1 Answer

0 votes
  • $e^{(x+y)}= e^x.e^y$
Step 1:
Given $\large\frac{dy}{dx}=$$e^{(x+y)}$
using the information in the tool box we get,
$\large\frac{dy}{dx} $$= e^x.e^y$
Now seperating the variables,
$\large\frac{dy}{e^y }=$$e^x.dx$
Step 2:
Now integrating on both sides we get,
$\int e^{-y}dy =\int e^x$
$-ye^{-y }= e^x + C$
$e^x + e^{-y} = C$
Hence the correct answer is A
answered Aug 13, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App