logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

The vectors $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k} $ and $\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}$ are perpendicular when

\[\begin{array} {1 1}(1)a=2, b=3 ,c=-4 &(2)a=4 ,b= 4 , c=5\\(3)a=4 ,b = 4 ,c=-5 &(4)a=-2 ,b=3 ,c=4 \end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
Given $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k} $ and $\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}$ are perpendicular
$ \therefore \overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k}.\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}=0$
$2a+3+4c=0$ ----(1)
$a=4 ,b = 4 ,c=-5 $ is the only values satisfying equation.
Hence 3 is the correct answer.
answered May 5, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...