Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The vectors $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k} $ and $\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}$ are perpendicular when

\[\begin{array} {1 1}(1)a=2, b=3 ,c=-4 &(2)a=4 ,b= 4 , c=5\\(3)a=4 ,b = 4 ,c=-5 &(4)a=-2 ,b=3 ,c=4 \end{array}\]

Can you answer this question?

1 Answer

0 votes
Given $\overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k} $ and $\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}$ are perpendicular
$ \therefore \overrightarrow{2i}+\overrightarrow{3j}+\overrightarrow{4k}.\overrightarrow{ai}+\overrightarrow{bj}+\overrightarrow{ck}=0$
$2a+3+4c=0$ ----(1)
$a=4 ,b = 4 ,c=-5 $ is the only values satisfying equation.
Hence 3 is the correct answer.
answered May 5, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App