logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If $|\overrightarrow{a+b}|=|\overrightarrow{a-b}|$ then

\[\begin{array} {1 1}(1)\overrightarrow{a} \; is\; parallel \;to\; \overrightarrow{b}&(2)\overrightarrow{a} \; is\; perpendicular\; to\; \overrightarrow{b}\\(3)|\overrightarrow{a}|=|\overrightarrow{b}|&(4)\overrightarrow{a}\; and \; \overrightarrow{b}\; are \;unit \;vectors\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
$|\overrightarrow{a+b}|=|\overrightarrow{a-b}|$
$|\overrightarrow{a+b}|^2=|\overrightarrow{a-b}|^2$
$(\overrightarrow{a+b})^2=(\overrightarrow{a-b})^2$
$\overrightarrow a^2 +\overrightarrow{b}^2+ 2 \overrightarrow{a} .\overrightarrow{b}=\overrightarrow a^2 +\overrightarrow{b}^2- 2\overrightarrow{a} .\overrightarrow{b}$
$4\overrightarrow{a}.\overrightarrow{b} =0$
$\overrightarrow{a}.\overrightarrow{b} =0$
$\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular.
Hence 2 is the correct answer.
answered May 5, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...