Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the general solution $y\;\log\: y\;dx-x\;dy=0$

Can you answer this question?

1 Answer

0 votes
  • $\int \log x = \large\frac{1}{x}$
Step 1:
Given: $y\log ydx -xdy = 0$
$xdy = y\log ydx$
Seperating the variables we get,
$\large\frac{dy}{y\log y} =\frac{ dx}{x}$
Step 2:
Integrating on both sides we get,
$\int\large\frac{ y}{y\log y} = \int\large\frac{ dx}{x}$
$\log(\log y) = \log x + \log C$
$\log(\log y) = \log xC$
$\log_e y= xC$
$e^{Cx} = y$
This is the required general equation.
answered Aug 15, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App