logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the general solution $y\;\log\: y\;dx-x\;dy=0$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $\int \log x = \large\frac{1}{x}$
Step 1:
Given: $y\log ydx -xdy = 0$
$xdy = y\log ydx$
Seperating the variables we get,
$\large\frac{dy}{y\log y} =\frac{ dx}{x}$
Step 2:
Integrating on both sides we get,
$\int\large\frac{ y}{y\log y} = \int\large\frac{ dx}{x}$
$\log(\log y) = \log x + \log C$
$\log(\log y) = \log xC$
$\log_e y= xC$
$e^{Cx} = y$
This is the required general equation.
answered Aug 15, 2013 by sreemathi.v
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...