logo

Ask Questions, Get Answers

X
 

If $g(x)=1+x-[x]$ where $[x]$ is greatest integer $x$ and $f(x)=\left\{\begin{array}{111}-1,\:\:\:\:x<0\\0,\:\:\:\:\:x=0\\1,\:\:\:\:\:x>0\end{array}\right.$ then $fog(x)=?$

$\begin{array}{1 1} -1 \\ 0 \\ 1 \\ f(x) \end{array}$

1 Answer

Toolbox:
  • $x-[x]$ is fractional function =a, where $a\in [0,1)$
Let,$g(x)=b$ where $b\in [1,2)$
$fog(x)=f(b) = 1 $ since b is >0
answered May 12, 2013 by rvidyagovindarajan_1
 

Related questions

...