Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Differential Equations
0 votes

Find the general solution $\sec^2x\;\tan y\;dx+\sec^2y\;\tan x\;dy=0$

$\begin{array}{1 1} \tan y \tan x = C \\ \Large\frac{\tan y}{\tan x} = \normalsize C \\ \Large\frac{\tan x}{\tan y} = \normalsize C \\1 - \Large\frac{\tan y}{\tan x} = \normalsize C\end{array} $

Can you answer this question?

1 Answer

0 votes
  • $\int\tan x = \sec^2x$
Step 1:
Given : $\sec^2x\tan ydx + \sec^2y\tan x dy = 0$
$\sec^2y\tan xdy = - \sec^2x\tan ydx$
Now seperating the variables we get
$\large\frac{\sec^2y dy}{\tan y} = -\frac{ \sec^2x dx}{\tan x}$
Step 2:
Let $\tan y$ be t hence $dt = \sec^2ydy$ and let $u = \tan x$ and $dt = \sec^2x dx$
Substituting this and integrating we get
$\int\large\frac{ dt}{t} =- \int\large\frac{ du}{u}$
$\log t = - \log u + \log C$
$\log t + \log u =\ log C$
$\log tu = \log C$
$tu = C$
Step 3:
substituting for t and u we get
$\tan y \tan x = C$
This is the required general solution.
answered Aug 15, 2013 by sreemathi.v
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App