logo

Ask Questions, Get Answers

X
 

The quadratic equation whose roots are $\pm\;i\sqrt{7} $is

\[\begin{array}{1 1}(1)x^{2}+7=0&(2)x^{2}-7=0\\(3)x^{2}+x+7=0&(4)x^{2}-x-7=0\end{array}\]

Download clay6 mobile app

1 Answer

The given roots are
$\alpha= i \sqrt 7$
$\eta= -i \sqrt 7$
Sum $ \alpha +\beta=i \sqrt 7 - i \sqrt 7=0$
Product $\alpha \beta = i \sqrt 7 \times i \sqrt 7=0$
$\qquad= -i^2 7 =7$
The quadratic equation whose roots are $\alpha , \beta$ is
$x^2$-(sum of the roots)x+product of the roots=0$
$x^2-(\alpha+\beta)x +\alpha \beta=0$
$x^2-ox+7=0$
$x^2+7=0$
Hence 1 is the correct answer
answered May 15, 2014 by meena.p
 
...