\[\begin{array}{1 1}(1)x^{2}+7=0&(2)x^{2}-7=0\\(3)x^{2}+x+7=0&(4)x^{2}-x-7=0\end{array}\]

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

The given roots are

$\alpha= i \sqrt 7$

$\eta= -i \sqrt 7$

Sum $ \alpha +\beta=i \sqrt 7 - i \sqrt 7=0$

Product $\alpha \beta = i \sqrt 7 \times i \sqrt 7=0$

$\qquad= -i^2 7 =7$

The quadratic equation whose roots are $\alpha , \beta$ is

$x^2$-(sum of the roots)x+product of the roots=0$

$x^2-(\alpha+\beta)x +\alpha \beta=0$

$x^2-ox+7=0$

$x^2+7=0$

Hence 1 is the correct answer

Ask Question

Tag:MathPhyChemBioOther

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...