Ask Questions, Get Answers


If $\large\frac{1-i}{1+i}$ is a root of the equation $ax^{2}+bx+1=0$ where $a ,b $ are real then $(a , b) $is

\[\begin{array}{1 1}(1)(1 , 1)&(2)(1 , -1)\\(3)(0 , 1)&(4)(1 , 0)\end{array}\]

1 Answer

The given roots is
$\alpha =\large\frac{1-i}{1+i}$
$\qquad= \large\frac{(1+i)(1-i)}{(1+i)(1-i)}$
$\qquad= \large\frac{1-2i+i^2}{1^2-i^2}$
$\qquad= \large\frac{1-2i}{1+1}$
$\therefore$ The other root is $ \beta=i$
Sum $\alpha+\beta =-i+i=0$
Product $\alpha \beta = -i \times i =- i^2 =1$
The quadratic equation is
$x^2 $- (sum of the roots)x +product of the roots =0$
Hence 4 is the correct answer.
answered May 15, 2014 by meena.p

Related questions