\[\begin{array}{1 1}(1)(1 , 1)&(2)(1 , -1)\\(3)(0 , 1)&(4)(1 , 0)\end{array}\]

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

The given roots is

$\alpha =\large\frac{1-i}{1+i}$

$\qquad= \large\frac{(1+i)(1-i)}{(1+i)(1-i)}$

$\qquad= \large\frac{1-2i+i^2}{1^2-i^2}$

$\qquad= \large\frac{1-2i}{1+1}$

$\qquad=\large\frac{-21}{2}$$=-i$

$\therefore$ The other root is $ \beta=i$

Sum $\alpha+\beta =-i+i=0$

Product $\alpha \beta = -i \times i =- i^2 =1$

The quadratic equation is

$x^2 $- (sum of the roots)x +product of the roots =0$

$x^2-0x+1=0$

$x^2+1=0$

$a=1,b=0$

$(a,b)=(1,0)$

Hence 4 is the correct answer.

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...