logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

If$ -i+3 $ is a root of $x^{2}-6x+k=0 $ then the value of $k$ is

\[\begin{array}{1 1}(1)5&(2)\sqrt{5}\\(3)\sqrt{10}&(4)10\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
The given root is
$\alpha= -i+3$
The other root is
$\beta =i+3$
Sum $ \alpha + \beta =-i +3 +i+3$
$\qquad= 6$
Product $\alpha \beta = (-i +3)(i+3)$
$\qquad= 3^2-i^2$
$\qquad= 9+1=10$
The quadratic equation is
$x^2$ -(sum of the roots)x + product of the roots=0
$x^2-6x+10=0$
comparing o the equation
$x^2-6x+k=0$
$k=10$
Hence 4 is the correct answer.
answered May 15, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...