\[\begin {array}{1 1}(1)\bigg(\frac{5}{2},\frac{-17}{2}\bigg)&(2)\bigg(\frac{-5}{2},\frac{-17}{2}\bigg)\\(3)\bigg(\frac{-5}{2},\frac{17}{2}\bigg)&(4)\bigg(\frac{3}{2},\frac{-17}{2}\bigg)\end{array}\]

Want to ask us a question? Click here

Browse Questions

Ad |

0 votes

0 votes

$y=2x^2-6x-4$

$\large\frac{dy}{dx}$$=4x-6$

Let $(x_1,y_1)$ be the point on the curve at which the tangent is parallel to x-axis

$\large\frac{dy}{dx} $$/(x_1,y_1)=4x_1-6$

Since the tangent is parallel to x-axis

$\large\frac{dy}{dx} $$/(x_1,y_1)=0$

$4x_1-6=0=> x_1=\large\frac{3}{2}$

$(x_1,y_1)$ is a point on the curve

$\therefore y_1=2x_1^2-6x_1-4$

$\qquad= 2 \times \large\frac{9}{4} $$ -6 \times \large\frac{3}{2}$$-4$

$\qquad= \large\frac{9}{2}-\frac{18}{2}$$-4$

$\qquad= \large\frac{9-18-8}{2}$

$\qquad= \large\frac{-17}{2}$

The point is $\bigg(\frac{3}{2},\frac{-17}{2}\bigg)$

Hence 4 is the correct answer

Ask Question

Take Test

x

JEE MAIN, CBSE, NEET Mobile and Tablet App

The ultimate mobile app to help you crack your examinations

...