Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
0 votes

The least possible perimeter of a rectangle of area $100m^{2}$ is

\[\begin{array}{1 1}(1)10&(2)20\\(3)40&(4)60\end{array}\]

Can you answer this question?

1 Answer

0 votes
Area $ab=100$
Perimeters $s= 2(a+b)$
$s = 2 \bigg( a+ \large\frac{100}{a} \bigg)$
$\large\frac{ds}{dt} $$=2 \bigg( 1-\large\frac{100}{a^2} \bigg) \frac{da}{dt}$
$1- \large\frac{100}{a^2} $$=0=> a= 10$
When $a=10, b= \large\frac{100}{10}$$=10$
$\qquad= 2(10+10) =40$
Hence 3 is the correct answer.
answered May 20, 2014 by meena.p

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App