Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

Find the position vector of a point $R$ which divides the line joining two points $P$ and $Q$ whose position vectors are \( \hat i + 2\hat j − \hat k\) and \( – \hat i + \hat j + \hat k\) respectively, in the ratio $2 : 1$ externally

This question has multiple parts. Therefore each part has been answered as a separate question on Clay6.com

$\begin{array}{1 1}(A) \hat i+2\hat j+\hat k \\(B) \large\frac{\hat i-2\hat j+\hat k}{3} \\ (C) -3\hat i+3\hat k \\ (D) \hat i-2\hat j-\hat k \end{array} $

Can you answer this question?

1 Answer

0 votes
  • Section formula:When a point R divides a line segment in the ratio m:n externally,then $\overrightarrow r=\large\frac{m\overrightarrow b-n\overrightarrow a}{m-n}$
Step 1:
Let $\overrightarrow a=\hat i+2\hat j-\hat k$ and $-\hat i+\hat j+\hat k$
$\overrightarrow{OR}$ divides $\overrightarrow{PQ}$ in the ratio 2:1.
Let us discuss when $\overrightarrow {OR}$ divides $\overrightarrow{PQ}$ externally.
We know when $\overrightarrow r$ divides externally in the ratio m:n,then $\overrightarrow{OR}=\large\frac{m\overrightarrow b-n\overrightarrow a}{m-n}$
Step 2:
Here $\overrightarrow a=\hat i+2\hat j-\hat k$ and $-\hat i+\hat j+\hat k$
$\overrightarrow{OR}=\large\frac{m\overrightarrow b-n\overrightarrow a}{m-n}$
$\overrightarrow{OR}=\large\frac{2(-\hat i+\hat j+\hat k)-1(\hat i+2\hat j-\hat k)}{2-1}$
$\qquad=\large\frac{-2\hat i+2\hat j+2\hat k-\hat i-2\hat j+\hat k}{1}$
$\qquad=-3\hat i+3\hat k$
answered May 20, 2013 by sreemathi.v
edited May 20, 2013 by sreemathi.v

Related questions

Ask Question
student study plans
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App