logo

Ask Questions, Get Answers

X
 

An asymptote to the curve $y^{2}(a+2x)=x^{2}(3a-x)$ is

\[\begin{array}{1 1}(1)x=3a&(2)x=-a/2\\(3)x=a/2&(4)x=0\end{array}\]

1 Answer

$y^2(a+2x)=x^2(3a-x)$
$y^2= \large\frac{x^2(3a-x)}{(a+2x)}$
If $x= \large\frac{-a}{2} $ then $y=\infty$
$\therefore x=-\large\frac{-a}{2} $ is an asymptote.
Hence 2 is the correct answer.
answered May 20, 2014 by meena.p
 

Related questions

...