Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[\int\frac{1}{x-x^3}\]

Can you answer this question?

1 Answer

0 votes
  • (i)If the integral function is of the form $\int\frac{dx}{(x-a)(x-b)}$ then the function can be resolved into partial fractions of th form $\frac{A}{(x-a)}+\frac{B}{(x-b)}$ and then solved
  • (ii)$\int \frac{1}{(x-a)}dx=log |x-a|+c$
Given $I=\int\frac{1}{x-x^3}$
This can be written as
But $(1-x^2)=(1-x)(1+x)$
$I=\int \frac{1}{x(1-x)1+x)}dx$
Resolving into a particular fraction
Now $\frac{1}{x(1-x)1+x)}=\frac{A}{x}+\frac{B}{1-x}+\frac{C}{1+x}$
Equating the coefficient of $x^2$,
Equating the coefficient of x,
Equating the constant terms,
Substituting for A in equation (1)
Add equ (2) and equ(4)
$\qquad 2B=1$
Hence $B=\frac{1}{2}$
Substitute the value for B in equ(2)
Hence $A=1,B=\frac{1}{2}\;and\;c=-\frac{1}{2}$
Substituting for A,B and C in I we get
$I=\int \frac{1}{x}+\frac{1}{2(1-x)}-\frac{1}{2(1+x)}dx$
On seperating the terms we get,
$log x+(-\frac{1}{2})log|1-x|-\frac{1}{2}log|1+x|+c$
On taking $\frac{1}{2}$ as the common factor,
$=\frac{2log x-log|1-x|-log|1+x|}{2}$
We know $2logx=log x^2$ and
Therefore $I=\frac{1}{2}log x^2-[\frac{1}{2}log(1+x) \times (1-x)]$
Therefore $\int \frac{dx}{x-x^3}=\frac{1}{2} log \bigg|\frac{x^2}{1-x^2}\bigg|+c$



answered Feb 15, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App