logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

The volume, When the curve $y=\sqrt{3+x^{2}}$ from $x=0$ to $x=4$ is rotated about $x$-axis is

\[\begin{array}{1 1}(1)100\pi&(2)\frac{100}{9}\pi\\(3)\frac{100}{3}\pi&(4)\frac{100}{3}\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
Required volume $V= \int \limits_a^b \pi y^2 dx$
$\qquad= \pi \int \limits_0^4 (3+x^2) dx$
$\qquad= \pi [3x+\large\frac{x^2}{3} ]^4_0$
$\qquad= \pi [3(4-0) +\large\frac{1}{3}$$ (4^3 -0)]$
$\qquad= \pi [12 +\large\frac{64}{3}]$
$\qquad = \pi [ \large\frac{36+64}{3}]=\frac{100}{3}$$\pi$
Hence 3 is the correct answer.
answered May 21, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...