logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Integrate the function\[\frac{1}{x^\frac{1}{2}+x^\frac{1}{3}}\qquad[Hint:\frac{1}{x^\frac{1}{2}+x^\frac{1}{3}}=\frac{1}{x^\frac{1}{3}\bigg(1+x^\frac{1}{6}\bigg)},put\;x=t^6]\]

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • (i)If f(x)=t, then f'(x)=dt.then if $I=\int f(x)dx,$it can be written as $\int t.dt$
  • (ii)$\int\frac{1}{x+a}dx=log |x+a|+c$
Given $I=\int\large\frac{1}{x^{1/2}+x^{1/3}}dx$
 
This can be written as $\int\large\frac{1}{x^{1/3}(1+x^{1/6})}dx$
 
Let $x=t^6$ on differentiating we get $dx=6t^5dx$
 
On substituting for t and dt we get,
 
$I=\int \large\frac{6t^5dt}{(t^6)^{1/3}(1+(t)}$
 
On simplifying we get,
 
$I=6\int\large\frac{t^3dt}{(1+t)}$
 
Since it is an improper rational function, let us divide,
 
Hence the function is $(t^2-t+1)-(\frac{1}{1+t})$
 
Therefore $I=6\int (t^2-t+1)dt-6\int\frac{1}{1+t}dt$
 
On integrating we get,
 
$\frac{6t^3}{3}-\frac{6t^2}{2}+6t+6log|1+t|+c$
 
Substituting for t we get,
 
$2(x^{1/6})^3-3(x^{1/6})^2+6(x^{1/6})-6log |1+x^{1/6}|+c$
 
$I=2\sqrt x-3x^{1/3}+6x^{1/6}-6log(1+x^{1/6})+c$

 

 

answered Feb 15, 2013 by meena.p
edited Aug 8, 2013 by vijayalakshmi_ramakrishnans
 
Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...