logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Choose the correct answers if $f(a+b-x) = f(x)$ , then $\int\limits_a^bx\;f(x)dx$ is equal to

$\begin{array}{1 1} (A)\frac{a+b}{2}\int\limits_a^bf(b-x)\;dx \\ (B)\frac{a+b}{2}\int\limits_a^bf(b+x)\;dx \\ (C)\frac{b-a}{2}\int\limits_a^bf(x)\;dx \\ (D)\frac{a+b}{2}\int\limits_a^bf(x)\;dx\end{array} $

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • $(i) \int \limits_a ^ bf(x)dx=F(b)-F(a)$
  • $(ii) \int \limits_a ^ bf(x)dx=\int \limits_a^b f(a+b-x)$
Given $I=\int \limits_a^b xf(x)dx $----------(1)
 
By applying the property $\int \limits_a^b f(a+b-x) =\int _a^b f(x) dx$
 
$I=\int \limits_a^b (a+b-x) f(a+b-x) dx$
 
$=\int \limits_a^b (a+b-x) f(x) dx \qquad \int \limits_a^b f(a+b-x)dx=\int \limits_a^b f(x) dx$----------(2)
 
Adding equ (1) and equ(2)
 
$2I=(a+b) \int \limits_a^b f(x)dx$
 
Therefore $I=\frac{a+b}{2} \int \limits_a ^b f(x)dx$
 
Hence the correct answer is D

 

 

answered Mar 6, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...