logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
0 votes

The particular integral of the differential equation $f(D)y=e^{ax}$ where $\;.f(D)=(D-a)g(D).g(a)\neq 0$ is

\[\begin{array}{1 1}(1)me^{ax}&(2)\frac{e^{ax}}{g(a)}\\(3)g(a)e^{ax}&(4)\frac{xe^{ax}}{g(a)}\end{array}\]

Can you answer this question?
 
 

1 Answer

0 votes
$f(D)y =e^{ax}$
$P.I= \large\frac{e^{ax}}{f(D)}$
$\qquad= \large\frac{e^{ax}}{(D-a)g(D)}$
$\qquad = \large\frac{1}{g(a)}. \frac{e^{ax}}{D-a}$
$\qquad=\large\frac{xe^{ax}}{g(a)}$
Hence 4 is the correct answer.
answered May 22, 2014 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...