logo

Ask Questions, Get Answers

 
X
 Search
Want to ask us a question? Click here
Browse Questions
Ad
Home  >>  CBSE XII  >>  Math  >>  Vector Algebra
0 votes

If $\overrightarrow{a}=\hat i+\hat j+2\hat k\;and\;\overrightarrow{b}=2\hat i+\hat j-2\hat k,$then find the unit vector in the direction of $\;2\overrightarrow{ a}- \overrightarrow{b}$

Can you answer this question?
 
 

1 Answer

0 votes
Toolbox:
  • Unit vector in the direction of $\overrightarrow {a}=\large \frac{\overrightarrow {a}}{|\overrightarrow {a}|}$
Let $\overrightarrow{a}=\hat i+\hat j+2\hat k\;and\;\overrightarrow{b}=2\hat i+\hat j-2\hat k,$
Therefore $ 2\overrightarrow{a}-\overrightarrow{b}=2(\hat i+\hat j+2 \hat k)-(2 \hat i+\hat j-2 \hat k)$
$\qquad\qquad \qquad= 2\hat i+2\hat j+4 \hat k-2 \hat i-\hat j+2 \hat k$
Therefore $ 2\overrightarrow{a}-\overrightarrow{b}=\hat j+6 \hat k$
The magnitude of this vector is
$ |2\overrightarrow{a}-\overrightarrow{b}|=\sqrt {(1)^2+6^2}$
$=\sqrt {37}$
Hence the Unit vector in the direction of $|(2 \overrightarrow {a}-\overrightarrow {b})| is =\large \frac{2\overrightarrow {a}-\overrightarrow {b}}{|2\overrightarrow {a}-\overrightarrow {b}|}$
$=\Large\frac{\hat j+6 \hat k}{\sqrt {37}}$
answered May 24, 2013 by meena.p
 

Related questions

Ask Question
student study plans
x
JEE MAIN, CBSE, NEET Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App
...