Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Prove the following\[\int\limits_0^\frac{\pi}{4}2\tan^3x\;dx=1-log2\]

Can you answer this question?

1 Answer

0 votes
  • (i)$\int \limits _a^b f(x)dx=F(b)-F(a)$
  • (ii) $ \tan ^2 x=\sec ^2 x-1$
  • (iii)$ \int \tan x dx=-log |\cos x| +c$
  • To prove $\int \limits_0^{\pi/4} 2\tan ^3x dx=1-log 2$
Given $ I=\int \limits_0^{\pi/4} 2 \tan ^3 x dx$
Let us write $ \tan ^3 x \;as\;\tan^2x.\tan x$
Hence $I=2 \int \limits_0^{\pi/4} \tan ^2x.\tan x dx$
But $\tan ^2x=\sec ^2 x-1$
Therefore $I=2 \int \limits_0 ^{\pi/4} (\sec ^2x-1)\tan x dx$
On seperating the terms,
$I=2[\int \limits_0^{\pi/4} \sec ^2 x \tan x]dx-2[\int \limits_0^{\pi/4}\tan x dx]$
on integrating ,
Let $I=2[I_1-I_2]$
Consider $I_1=\int \limits_0^{\pi/4} \tan x \sec^2x dx$
Let $\tan x =t,$ on differentiating w.r.t.x we get $\sec ^2xdx=dt$
As we substitute t , the limits also changes,
when x=0,since $\tan x=0 \qquad t=0$
when $x=\pi/4,$since $\tan \pi/4=1 \qquad t=1$
Therefore $I_1=\int \limits_0^1 t.dt$
Hence $ I=2 \bigg[\int \limits_0^1 t.dt- \int \limits_0^{\pi/4} \tan x dx\bigg]$
on integrating we get,
$I=2 \bigg\{\bigg [\frac{t^2}{2}\bigg]_0^1-\bigg[-log \cos x \bigg]_0^{\pi/4}\bigg\}$
On applying limits,
$I=2\bigg\{\bigg[(\frac{1}{2}\bigg)-0\bigg]+\bigg[log \cos \pi/4-log \cos 0 \bigg]\bigg\}$
But $ \cos \pi/4=\frac{1}{\sqrt 2}\; and \; \cos 0=1$
$=2 \times \frac{1}{2}+2 [ log \frac{1}{2\sqrt 2}-log 1]$
$=1+\log (\frac{1}{\sqrt 2})^2-0 \qquad(log 1=0)$
$=1+\log (1/2)$
$=1-log 2$
Hence proved



answered Mar 14, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App