Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Prove the following\[\int\limits_0^\frac{\pi}{2}\sin^3x\;dx=\frac{2}{3}\]

Can you answer this question?

1 Answer

0 votes
  • $\int \limits _a^b f(x)dx=F(b)-F(a)$
  • (ii) $ \sin ^2 x=1-\cos ^2 x$
  • (iii)$ \int \sin x dx=-\cos x +c$
Given $I=\int \limits_0^{\pi/2} \sin ^x dx=\frac{2}{3}$
$\sin ^3 x$ can be written as $\sin ^2x.\sin x$
Hence $I=\int \limits_0 ^ {\pi/2}sin ^2x.\sin x dx$
But $ \sin ^2x=1-\cos ^2 x$
Therefore $I=\int \limits_0^{\pi/2} (1-\cos ^2 x).\sin x dx$
on expanding we get
$I=\int \limits_0^{\pi/2} (\sin x -\cos ^2x.\sin x) dx$
on seperating the terms,
$I=\int \limits_0^{\pi/2} \sin x dx -\int \limits _0^ {\pi/2} \cos ^2 x.\sin x dx$
Let $I_1=\int \limits_0^{\pi/2} \sin x dx$
Consider $I_2=\int \limits _0^ {\pi/2} \cos ^2 x.\sin x dx$
Let $ \cos x =t,$ on differentiating w.r.t x we get
$-\sin x dx =dt \qquad => \sin x dx =-dt$
The value of the limit changes when we substitute t
When x=0 $\cos 0=1$ hence t=1 and When $x=\frac{\pi}{2}, \cos \pi/2=0,hence\; t=0$
Therefore $I_2=-\int\limits_1^0 t^2 dt$
Therefore $I=I_1+I_2$
$=\int \limits_0^{\pi/2} \sin x dx-\int\limits_0^1 -t^2 dt$
On integrating we get,
$I=[-\cos x ]_0^{\pi/2}+[\frac{t^3}{3}]_1^0$
On applying the limits we get ,
$I=[-\cos \pi/2 -(-\cos 0)]+[0-\frac{1^3}{3}]$
But $\cos \pi/2=0\; and\; \cos 0=1$
Hence $I=[0+1]+[-\frac{1}{3}]$



answered Mar 13, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App