Ask Questions, Get Answers

Want to ask us a question? Click here
Browse Questions
Home  >>  CBSE XII  >>  Math  >>  Integrals
0 votes

Prove the following\[\int\limits_1^3\frac{dx}{x^2(x+1)}=\frac{2}{3}+log\frac{2}{3}\]

Can you answer this question?

1 Answer

0 votes
  • If the given integral function in a rational function of the form $\large\frac{A}{(x+1)(x+2)^2}=\frac{A}{(x+_1)}+\frac{B}{(x+2)}+\frac{c}{(x+2)^2}$
  • (ii)$\int \frac{dx}{(x+a)} =\log (x+a) +c$
  • (iii)$ \int \limits_a^b f(x)dx=F(b)-F(a)$
$\int \limits_1^3 \frac{dx}{x^2(x+1)}=\frac{2}{3}+log \frac{2}{3}$
given $I=\int \limits_1^3 \frac{dx}{x^2(x+1)}$
This is a proper rational function,hence it can be resolved into its partial function as
Equating the coefficient of $x^2,$
$0=A+C$ ----------(1)
Equating the coefficient of $x$
Equating the constant term,
$1=B \qquad Hence\; B=1$
Substituting for B in equ (2) we get,
$ A+1=0 => A =-1$
Substituting for A in equ (1)
$-1+C=0 => C=1$
Hence $A =-1,B=1,C=1$
Hence on substituting for A,B and C we get
Therefore $I=\int \limits_1^3 \frac{-1}{x} dx+\int \limits_1^3 \frac{1}{x^2}dx+\int \limits_1^3 \frac{a}{x+1} dx$
On integrating we get
$I=\bigg[-log x\bigg]_1^3+\bigg[\frac{x^{-2+1}}{-2+1}\bigg]_1^3+\bigg[log (x+1)\bigg]_1^3dx$
$=[-log x]_1^3-[\frac{1}{x}]_1^3+[log (x+1)]_1^3$
On applying limits,
$-(log 3- log 1)-(\frac{1}{3}-1)+[log[(3+1)-log 2]]$
But $log (a/b) =log a-log b$
Therefore $-(log 3/1)+\frac{2}{3}+log \frac{4}{2}$
$=\frac{2}{3}+\log (\frac{4}{2} /\frac{3}{1})$
$=\frac{2}{3}+log (\frac{2}{3})$
Hence $I=\frac{2}{3}+log (\frac{2}{3})$
Hence proved



answered Mar 7, 2013 by meena.p
Ask Question
student study plans
JEE MAIN, CBSE, AIPMT Mobile and Tablet App
The ultimate mobile app to help you crack your examinations
Get the Android App