If $\overrightarrow{a}= \hat{i} + \hat{j} + t \hat{k}$, $\overrightarrow{b} = \hat{i} + 2 \hat{j} +3 \hat{k}$, then the values of $'t'$ for which $(\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{a} - \overrightarrow{b})$ are perpendicular, are :