If [x] denotes the greatest integer not exceeding x and if the function f defined by \[f(x) = \left\{ \begin{array}{l l} \frac{a+2 \cos x}{x^2} & \quad ( x < 0) \\ b\;\tan \frac{\pi}{[x+4]} & \quad (x \geq 0) \end{array} \right. \] is continuous at $x=0,$ then the ordered pair $(a,b)=$