$(A)\; (1-x)^n$
$(B)\;(1+x)^{-n}$
$(C)\; $ If $x > 1,$ then $1+\large\frac{1}{x}+\frac{1}{x^2}+......$ is
$(D)\; $ If $| x | > 1,$ then $1+\large\frac{2}{x^2}+\frac{3}{x^4}-\frac{4}{x^6}+......$ is
|
$(i) \large\frac{x}{x+1}$
$(ii) 1-nx+\large\frac{n(n+1)}{2!}$$ x^2-.......if | x | < 1$
$(iii) 1+nx-\large\frac{n(n+1)}{2!}$$ x^2+.......if | x | < 1$
$(iv)\;\large\frac{x}{x-1}$
$(v) \large\frac{x^4}{(x^2+1)^2}$
$(vi) \large\frac{x^4}{(x^2-1)^2}$
|