If $f: R \to R $ is defined by $f(x)= \left\{ \begin{array}{1 1} \large\frac{x-2}{x^2-3x+2} & \quad if & \quad x\in R -[1,2] \\ 2 & \quad if & \quad x=2 \\ 1 & \quad if & \quad x=2 \end{array} \right. $ then $\lim \limits_{x \to 2} \large\frac{f(x)-f(2)}{x-2}=$