Let $p\lambda^4+q\lambda^3+r\lambda^2+s\lambda+t$ = $\begin{vmatrix}\lambda^3+3\lambda&\lambda-1&\lambda+3\\\lambda+1&-2\lambda&\lambda-4\\\lambda-3&\lambda+4&3\lambda\end{vmatrix}$ be an identity in $\lambda$ where $p,q,r,s$ and $t$ are constant. Then the value of $t$ is