Consider the following first order types of $Rx_n$ $x\;\; \underrightarrow {K_1}\;\;A+B,y\;\;\underrightarrow {K_2}\;\;C+D,z\;\;\underrightarrow{K_3}\;\; E+F$ if $50\%$ of $Rx_n$ y was completed when $7.5\%Rx_n$ of x and $87.5\%Rx_n$ of z completed then relation between $K_1,K_2$ & $K_3$