$(a)\;2 \log | \sec (x-\pi/6)+\tan (x-\pi/6) |+c \\(b)\;\frac{1}{2}\log | \sec (x-\pi/6)+\tan (x-\pi/6) |+c \\(c)\; 2 \log |\sec (x-\pi/6)-\tan (x-\pi/6) |+c \\ (d)\;\frac{1}{2} \log | \sec (x-\pi/6)-\tan (x-\pi/6) |+c$