Email
Chat with tutors
logo

Ask Questions, Get Answers

X
 
Questions  >>  CBSE XII  >>  Math  >>  Model Papers
Answer
Comment
Share
Q)

Let \( A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) , show that \( (aI + bA)^n = a^nI+na^{n-1}bA, \) where I is the identity matrix of order zero \( n \in N. \) If $ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} $ prove that : $ \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}, n \in N. $

1 Answer

Home Ask Tuition Questions
Your payment for is successful.
Continue
...