Q)
For each operation $\ast$ defined below, determine whether $\ast$ is binary, commutative or associative. $\begin{array}{1 1}(i) \;\;\; On\, Z,\, define \,a*b\, = a-b & \;\\(ii) \;\;\; On\, Q,\, define \,a*b\, = ab+1 & \;\\(iii) \;\;\; On\, Q,\, define \,a*b\, = \frac {ab} {2} & \;\\(iv) \;\;\; On\, Z^+, \, define\, a*b= 2^{ab} & \;\\(v) \;\;\; On\, Z^+,\, define \,a*b\, = a^b & \;\\(vi) \;\;\; On R - \{ -1\},\, define\, a*b= \frac {a} {b+1} & \;\end{array}$
5 Answers
...